Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

(CV)

<01/12/20>

CONTINUOUS INTERNAL EVALUATION- 2

Dept:CV Sem / Div: 5 Sub:Basic Geotechnical Engg S Code: 18CV54
Date: 02/12/20 Time:2.30-4.00pm Max Marks: 50 Elective: N
Note: Answer any 2 full questions, choosing one full question from each part.

Q	Questions	Marks	RBT	COs
	PART A			
a	Explain mass-spring analogy of consolidation of soils.	6	L2	CO5
b	Illustrate OCR and its need in consolidation and Explain Casagrande's method of determination of of pre consolidation pressure.	10	L2	CO5
С	The time to reach 40% consolidation of a two way drained saturated clay sample of 10 mm thick in the laboratory is 40 secs. Determine the time required for 60% consolidation of the same soil 12m thick on an impervious layer subjected to same loading conditions	9	L3	CO5
	OR		-	
a	Explain square root of time fitting method for determination of coefficient of consolidation	10	L2	CO5
Ь	In a consolidation test, the void ratio of soil sample decreases from 1.20 to 1.10 when the pressure increases from 160 to 320 kN/m ² . Determine the coefficient of consolidation, if the coefficient of permeability is 8 x 10 ⁻⁷ mm/sec.	7	L3	CO5
С	A layer of clay 8m thick underlies a proposed new building. The existing overburden pressure at the center of clay is 290kN/m ² and the load due to the new building increases the pressure by 100kN/m ² Cc=0.45,w=50%, G=2.71. Estimate consolidation settlement	8	L3	CO5
	PART B		-	i de la composición del composición de la compos
a	Explain the following terms: i) Total stress iii) Effective stress ii) Neutral stress iv) Quick sand condition	5	L2	CO3
ь	Explain Electrical diffused double layer and Adsorbed water.	5	L3	CO
С	Derive an expression for determination of coefficient of permeability by falling head permeability	5	L2	CO:
d	A granular soil deposit is 7m deep over an impermeable layer. The ground water table is 4m below the ground surface. The deposit has a zone of capillary rise of 1.2m with a saturation of 50% . Plot the variations of total stress, pore water pressure and effective stress with the depth of deposit. Take $e=0.6$ and $G=2.65$		L3	CO.
	OR			
a	Explain with sketches, the common clay minerals	7	1.2	CO
ь	A clay structure of thickness 8m is located at a depth of 6m below the ground surface, it is overlayed by fine sand, the water table is located at a depth of 2m below ground surface. For fine sand submerged unit weight is 10.2 kN/m ³ . The moist unit weight of sand located above water table is 16kN/m ³ . For clay layer G = 2.76 and w = 25%,	10	1.3	CO.
		·	. 11	100

Prepared by:

ALL

Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1,10

<01/12/20>

CONTINUOUS INTERNAL EVALUATION- 2

Compute the effective stress at the middle of clay layer			
c Differentiate between: i) Seepage velocity and discharge velocity ii) coefficient of permeability and coefficient of percolation	3	L.2	CO3
d Derive an expression for determination of coefficient of permeability by constant head permeability	5	L2	CO3

Prepared by: